On a nonlinear, nonlocal parabolic problem with conservation of mass, mean and variance

نویسندگان

  • A. Tudorascu
  • M. Wunsch
چکیده

In this paper we prove that the steepest descent of certain porous-medium type functionals with respect to the quadratic Wasserstein distance over a constrained (but not weakly closed) manifold gives rise to a nonlinear, nonlocal parabolic partial differential equation connected to the study of the asymptotic behavior of solutions for filtration problems. The result by Carlen and Gangbo on constrained optimization for steepest descent of the negative Boltzmann entropy in the Wasserstein space is generalized to porous-medium type functionals. An interesting feature of the resulting Fokker-Planck equation is the nonlocality of its drift term occurring at the same time as its nonlinearity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical scheme for solving nonlinear backward parabolic problems

‎In this paper a nonlinear backward parabolic problem in one‎ ‎dimensional space is considered‎. ‎Using a suitable iterative‎ ‎algorithm‎, ‎the problem is converted to a linear backward parabolic‎ ‎problem‎. ‎For the corresponding problem‎, ‎the backward finite‎ ‎differences method with suitable grid size is applied‎. ‎It is shown‎ ‎that if the coefficients satisfy some special conditions‎, ‎th...

متن کامل

SOLUTION OF AN INVERSE PARABOLIC PROBLEM WITH UNKNOWN SOURCE-FUNCTION AND NONCONSTANT DIFFUSIVITY VIA THE INTEGRAL EQUATION METHODS

In this paper, a nonlinear inverse problem of parabolic type, is considered. By reducing this inverse problem to a system of Volterra integral equations the existence, uniqueness, and stability of the solution will be shown.

متن کامل

Numerical Analysis for a Nonlocal Parabolic Problem

Abstract. This article is devoted to the study of the finite element approximation for a nonlocal nonlinear parabolic problem. Using a linearised Crank-Nicolson Galerkin finite element method for a nonlinear reaction-diffusion equation, we establish the convergence and error bound for the fully discrete scheme. Moreover, important results on exponential decay and vanishing of the solutions in f...

متن کامل

Solution Posedness for a Class of Nonlinear Parabolic Equations with Nonlocal Term

Based on denoising, segmentation and restoration problems of image processing and combined with two-phase flow mathematical theory, this paper proposes a class of nonlinear parabolic equations with nonlocal term. By fixed point theorem, the existence of initial boundary value problem is gotten. And then this paper establishes solution uniqueness and stability about initial value u0 and free ter...

متن کامل

On a Nonlocal Aggregation Model with Nonlinear Diffusion

We consider a nonlocal aggregation equation with nonlinear diffusion which arises from the study of biological aggregation dynamics. As a degenerate parabolic problem, we prove the well-posedness, continuation criteria and smoothness of local solutions. For compactly supported nonnegative smooth initial data we prove that the gradient of the solution develops L∞ x -norm blowup in finite time.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010